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ABSTRACT 

For the class of finite-rank transformations having no partial rigidity (this 
contains the class of mixing transformations) rank behaves like a logarithm on 
positive powers in that rk(Tk) = k.  rk(T). 

One of the vague but central questions in the area of finite rank mixing 

transformations is whether any such T can be built from some set of "basic" 

transformations (optimistically: transformations with minimal self-joinings) via 

some class of "reasonable" operations such as powers, roots, and finite 

extensions. A first step would be to explore how rank varies under these 
operations. 

One case of how rank varies under powers is known: If T is rank-1 mixing 
then rk(T k) = k; this is a special case of a result in [2] and has apparently been 

known for some time although the author does not know where it appears in 

print. Some assumption on the randomness of T is necessary - -  for instance, 

weak mixing is not enough. One can construct [1] a weak mixing T such that 

rk(Tk) = 1 for all non-zero k. This T will be rigid. 

The purpose of this paper is to demonstrate the following theorem. 

THEOREM (Rank of Powers). I[ T has zero rigidity, p E N, and T p is ergodic, 

then rk(T ~) = p .  rk(T). 

The requirement that T p be ergodic is made to ease the exposition of the 

proof since the applications in which we are interested arise when T is mixing. If 

T is mixing and S q = T p for some transformation S and positive integers p and 
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q, then, since the mixing property is closed under roots and (non-zero) powers, 

rk(S) - / 7 .  rk(T). - q  

Notations and Conventions 

A transformation will mean a measure preserving transformation on a 

Lebesgue probability space. A transformation is invertible unless said otherwise. 

Spaces are assumed non-atomic. Any subset of a space is assumed measurable. If 

A and B are subsets, A - B  denotes the set difference A N B  c. As is 

customary, statements have a tacit "almost everywhere" attached, where 

appropriate. 

A partition (alphabet) is a finite collection of atoms (letters). Suppose 

T: X---> X, P a generating partition, and x E X. Let x I~, i E Z, denote the letter 

of P that T~(x) is in. Let x 1~_~ denote the doubly infinite T, P-name of x and for 

a, b E Z, a < b, let x l~ denote the substring 

x I o x l o + , . . . x l b  o. 

Generally we will identify the point x with its name x p_~ and so x is a synonym 

for x I~_~. For W a P-h-word,  that is, a word of length h over the P alphabet, we 

index W from zero, i.e., W = W I, h. The length of W, h, is denoted len(W); so 

len(x [b)= b - a. 

The symbols e, & or, K denote numbers in (0, 1]. We use "V large" as a 

quantifier so that "V large n "  means " 3 N  such that Vn > N" .  The expression 

"e-percent"  means "a fraction thereof, of size e" .  Saying that at least e-percent 
i m + 

of the name x [o is covered by the disjoint substrings {x 1,. h},,=,, i,, + h =< i,.+,, 

means that the lower density of the set U~,=~[i,,, i,. + h) of natural numbers is 

bounded below by e. In general, a symbol such as [i,,, i,, + h) is to denote a 

half-open interval of integers. < 
We use the symbol = so that " a  = b"  or "b  -- a "  means the expression b 

defines the new symbol a. An expression such as 7(1 - 8) = 6 means to define 

the symbol 8 so that equality holds. 

§0. We define the rank of a transformation. 

DEFINmON. We have T: X ~  X and a fixed generating partition P. Given a 

collection C of P-h-words and an x E X, we say that a sequence {im}7.~, of 

positive integers, where i,. + h _-< i,,÷,, ( 1 -  8)-covers (the name x 17,) up to e 
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d-error if the disjoint substrings 

(1) {x Ii.~+h}~,=l cover at least ( 1 -6 ) -pe rcen t  of x I~ 

and for each m there is an associated word W E C such that 

im+h 
(2)  , .  , w)_-< 

The sequence of natural numbers {i,, }~,=~ will be called a (1 - 6)-covering (of x Io 

by C). 

Let r denote the number of words, I C I, in C. Suppose we have, associated to 

C, a set B C X which is the base of a Rohlin stack of height h. Suppose the stack 

fills up at least (1 - 6)-percent of the space, i.e., h • ~ ( B )  => 1 - 6. To each W E C 

suppose we have an associated set Bw such that B is the disjoint union U w~cBw 
and 

(3) For each y E Bw : d(y I~, W) _-< e. 

Then given an x E X, we have a prescription for making a (1 - 6)-covering {i,,}~ 

- -  simply let i,, be the mth hitting time of the orbit of x against the set B. That 

is, le t  i,, be the smallest i, i > i,,_,, such that T'(x)E B; start the induction by 

io = 0. Thinking of C as a collection of paints and each W E C as a color we can 

interpret (1) and (2) as a prescription for painting h •/z (B)-percent of x 1~7 using r 

colors of paint. 

We will call C, along with its associated sets Bw and the number e, a palette if 
(3) is satisfied. Agree to let len(C) and d-err(C) denote the numbers h and e, 

respectively. Let base(C) denote the base set, B, of the stack and for each color 

W E C let base(W) denote Bw. Finally, let /z  (C) denote the number ht~ (B) - -  

the measure of the stack - -  and let the symbol ~ ( W )  denote the number 

hl.t(Bw), for each W E  C. 
Given a palette C and a point x, the above sequence {i,.}] ~, where i,, is the ruth 

hitting time of x against base(C), will be called the covering of x (by C). If index 

i and color W are such that T ' (x)  E Bw, we will call the substring x ]i +h a swatch 
of color W and write color(x Ii ÷h) = W. [] 

DEFINITION. A sequence of palettes {C.}~=~ will mean a sequence of palettes 

with the understanding that 

len(C,)--*~, /.~(C,)---*I, and d'-err(C.)---*0 

as n ~ ~. Define the rank of the process T, P to be the smallest positive integer r 

for which there exists a sequence of palettes {C,}~ with each I C. [ = r. If no such r 
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exists define the rank, written rk(T, P), to be infinite. Finally, define the rank of 

the transformation T to be the supremum of rk(T,P) as P ranges over all 

partitions of X. [] 

REMARK. The definition of rank given above is called by some authors even 
rank or uniform rank. We remark in passing that there is a more general notion 

called non-uniform rank. When contrasting the two, it is mnemonic to use rk(" ) 

for uniform rank and rk(. ) for non-uniform rank. 

The definition of rk(T, P) is the same as for uniform rank except that the 

words in a palette need not all have the same length. Consequently, the 

associated Rohlin stack is permitted to have columns of varying heights. A 

sequence of palettes must have l e n ( C o ) ~  where, now, len(C) denotes the 

length of the shortest word in C. Afortiori rk(T, P) is no larger than rk(T, P) and 

so rk(T) < ~(T) .  We will not have occasion to use non-uniform rank in this 

article other than for a question in the conclusion. 

It will be useful to show that the rank of an ergodic process T, P can be 

computed from the name of any single point x. (Here, x is to be "sufficiently 

generic".) 

PROPOSITION. Suppose x is generic and C is a finite collection of P-h-words. 
Suppose {im}T is a (1 - `52)-covering of x [o up to e d-error. Then we can find a 
palatte (7, whose collection of colors is C, such that d-err(C)= e and Iz (C) > 
1-5,5. 

REMARK. Hence, if one can cover (1-`52)-percent of a particular generic 

name x Io by the words in C, one can cover at least ( 1 -  5~)-percent of any 
generic name by the words in C. 

SKETCH OF PROOF. We obtain a set B C X, to play the role of base(C), by 

describing how to construct the sets Bw, W E C. We leave to the reader the 

explicit calculation which shows that B can be so chosen that hlt (B)> 1 -  5`5. 
Actually even this computation is unnecessary - -  we are really only interested in 

showing that hlz(B) can be made as close to 1 as desired by having chosen 5̀ 

sufficiently tiny. 

Let E, E C X, be the base of a Rohlin stack 

(4) E, T(E), T2(E), . . . ,  TH-'(E) 

where E and the stack height H were chosen so that H ~> h and the measure of 

the stack is very close to 1, that is, H . / z ( E ) ~ I .  Define integers {]t}~ 
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inductively by jo ~ 0 and j~ is the smallest j, j > jr-1 such that T' (x) E E. By the 
ergodic theorem the substrings 

JI+H~ = 
(5) {x i, ,'=, cover most of x 1o. 

By hypothesis, the "swatches" {x [i~*h}~,=l cover most of x 1o (here "most"  is 

actually 1 - 82 - -  but since we are not doing an explicit calculation, we need not 

have an explicit name for it). This, combined with (5) and H->  h, yield that for 

most values of l: 

ira+ ra" 
(6) Most of x 11; ÷" is covered by {x 1,, h}m=,.' 

where m' and m" are chosen smallest and largest, respectively, that j~ < i,,,< 

i,,~+ h _6- < j~ + H. Hence by discarding the bad values of l and renumbering, we 

may assume that (6) holds for all l and that (5) continues to be true. 

Returning to our Rohlin stack, we can columnate it into columns determined 

by the T, P -H-names  of points in the base. Letting K denote the number of such 
K 

columns we can write the base E as disjoint union E =  Uk=lEk where 

E~ . . . . .  E~ are the bases of the K columns. For each k, let I(k) denote the 

smallest positive integer, should one exist, such that 

T"'*~(x) E Ek. 

Discard from E those sets Ek for which no such l(k) exists. The set E is now a 
bit smaller than it was but we can continue to assert that the stack (4) fills up 

most of the space; the ergodic theorem and (5) imply that the total measure of 

the discarded columns must be small. For each discarded E~, discard k from 

{1 , . . . ,K}  and renumber so that we may now say that l(k) exists for every 

k E { 1  . . . . .  K}. 
We proceed to define a set B, the base of a Rohlin stack of height h, 

as the disjoint union of sets Bw as W ranges over the "colors" in C. For 

k = 1 , . . . , K  let re(k) and M(K) be the numbers m' and m" of (6) when 

l ~ l(k). For each color W E C let Bw be, roughly, the union of those column 

levels of our stack, (4), which commence a swatch of color W. Specifically 

• ,3 K 

Bw = U U{T'm-~"k'(Ek): m(k)  <= m <= M(k)  and color(x Ii~ ÷h) = W}. 
k = l  

The disjoint union B = U w~c.Bw forms the base of a Rohlin stack of height h. 
As a set, this stack, U~=o T'(B),  is a subset of our other stack U , ~ '  T ' (E) .  

Moreover, as sets these stacks are practically equal, by (6). One can have chosen 

H sufficiently -> h and HIt(E) sufficiently ~ 1 to insure that hit(B) > 1 - 58. [] 
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We get immediately the following corollary. 

LEMMA 1. Suppose x generic and for n = 1,2 . . . .  that C, is a collection of P- 

h,-words which (1 - 6,)-cover x Io up to e, d-error and where h. --~oo, 6, --~0, and 

e , ~ O .  I f  each IC,[<-r, then rk(T,P)~r. 

The definition of rk(T, P)  is a "coding" definition in that it allows for some 

d-error. An advantage of the coding definition is that it inherits under codes. 

LEMMA 2. P and Q are partitions of X and P generates under T. Then 

rk(T, Q)  < rk(T, P). 

PROOF. Pick a point x E X generic for T, Q and T, P. The T, Q name of x 

can be approximated arbitrarily well by finite codings of the T, P name of x. []  

Hence if Q generates, then rk(T, Q)  = rk(T, P). The coding definition of rank 

thus has the convenient feature that the rank of a transformation T can be read 

from any generating partition P;  for rk(T) simply equals rk(T, P). 

The following lemma is true without the stated assumption of ergodicity. 

However,  we use a name argument for the proof as preparation for future name 

arguments. 

LEMMA 3. 

(7) 

For a given p ~ N suppose that T p is ergodic. Then 

p .  rk(T) _-> rk(T p) _-> rk(T). 

PROOF. Set r = rk(T). The right-hand inequality of (7) succumbs to the same 

kind of proof as does the left-hand inequality. Also, the case p = 2 gives the idea. 
So we content ourselves to show 2r _--> rk(TZ). 

Let P be a generating partition for T. Then O = P v TP generates for T 2. A 

Q "letter" is an ordered pair (w w') where w and w' are letters of P. A Q-word 

is a sequence of pairs of P-letters. 

For any given e and 6, choose some palette C for the T, P process with 

I C] = r, d-err(C) < e/2, p.(C) > 1 - 6, and where h' = len(C) is large compared 

with 1/(e/2) and 1/6. For notational convenience assume h' is odd and write 

2h + 1 = h'. Fix some x E X which is generic for the processes T, P and T 2, Q. 

Writing its forward T, P name as x Io = XoX~ x 2 " " ,  the forward T 2, O name of x 

is 

(8) (xo x,) (x2 x3) (x, x,) -- .. 

We show that rk(T 2) -< 2r by constructing a collection of Q-h-words,  2r many of 

them, which ( 1 -  6)-covers (8), up to e d-error. 
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Given a W E C, write it as a sequence of P-letters Wow,.. • wzh. From W we 

create two Q-h-words: 

(Wo w,)(w2 w3)" " (wzh-2 wzh_,), 

(w, wz)(w, w, ) . . .  

As W ranges over C, we so obtain a collection of 2r Q-h-words. If h '  was chosen 

sufficiently large, this collection will (1 - 8)-cover (8) up to e d-error. [] 

§1. We now turn to some of the interactions between rigidity of a transfor- 

mation and finite rank. 

DEFINITION. Define the rigidity number, p(T), of a transformation T to be the 

supremum of numbers p E [0, 1] for which there exists a sequence of integers 

{s,,}~, Is,, [ ~  00, such that 

(9) VA: lim IX (A N T~" (A )) >- p . lx (A ). 

By splicing sequences, 3 a sequence {s,,} for which the above holds with p 

replaced by p(T). 

LEMMA 4. In the preceding definition, rather than require Is,, ]---> 00 it suffices 
that s,, # O. 

PRoof. Suppose {so} is a non-zero sequence satisfying (9), for some p > 0. If 
Is, [-,400 then we can drop to a subsequence of {s°} which is a non-zero constant 

- -  say, 17. Thus 

(9') VA : Ix ( A n  T'7A ) >-_ pix (A).  

In particular this holds for any set A of the form B ~ TZ7B. Since this A is 

disjoint from T'TA, (9') forces Ix(A) = 0. So B = TJTB for any set B and hence 

p(T)  = 1. [] 

One says T has zero rigidity if p(T)  = O, partial rigidity if p(T)  > 0, and is rigid 
if p ( T ) =  1. The following is easily checked. 

PROPOSmON. If T is mixing then p ( T ) =  O. 

Hence the Rank-of-Powers theorem will apply to any finite rank mixing 

transformation. 
It will be convenient to have a criterion, in terms of names, for recognizing 

partial rigidity. We will need a consequence of the ergodic theorem and the 

definition below. For the rest of this section, T, P is a fixed ergodic process. 
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Suppose A is a T, P cylinder set of length k. Let A 1~ denote the P-k-word 

defining the set A. For any word WII,, with l >  k, define the symbol 

freq(A 1,~ in W 1/~) to be the frequency 

1 0-< l a n d  W[~+k A[,~}I. l _ ( k _ l ) ] { i :  i < i + k  <- = 

The following well known result is a standard corollary of the ergodic 

theorem. 

STANDARD CODING LEMMA. (In the statement of the lemma, the word 

"density" may be consistently replaced by either "lower density" or "upper 

density", in the set of natural numbers.) 
For a.e. T, P-name x ~ X, any e, and any cylinder set A 1~, the following holds 

V large I. Suppose {x [i:+t}~, =, is any sequence of disjoint blocks, i,~ + 1 < ira+,. Let K 

denote the density' of these blocks in x 1~, i.e. 

° ,t K = density [i,.,im + l . 
I 

Then, the density in x I~ of lhose blocks satisfying 

k i m + I~ (10) Ifreq(A 1. in x ~, , - / z ( A ) [  < e 

exceeds K - e. 

REMARK. In the sequel, a name x 17~ will be called generic for T,P if (in 

addition to seeing each cylinder set with the correct limiting frequency) it is in 
the set of full measure of the lemma. 

PROOF. Say that the ruth block is good if (10) holds. To prove the lemma in 
either the upper or lower density case, it suffices to show that V large M: 

density{j E [0, iM + 1): 3 a good m, i,, =< j < i,~ + 1} 
(11) 

> density{j E [0, i~ + l): 3m, i,, =< j < i,, + l} - e. 

Here "density" means in the finite set of integers [0, iM + l) and consequently m 

ranges over {1 . . . .  , m}. 

It will be convenient notationaIly and there is no essential loss of generality in 

assuming k = 1 and that the set A can be regarded as a letter in the alphabet P. 

When so regarded, we write it as " A " .  By the ergodic theorem, we can choose 

an N large enough that ~ ( E ) >  1 - e where E denotes the set of points y ~ X 

such that 

(12) V U, L => N: I f r eq ( "A"  in y I~L)-/z (A)] < e. 
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Now choose l sufficiently large t h a t / z ( E ) >  1 -  e + (2Ne/I). Take x to be any 

point whose orbit hits E with the correct frequency. 
We now demonstrate (11). Fix some M large enough that 

2N 
density(@) > 1 - e + - T  e 

where ~ denotes the set of integers j in [0, iM + I) such that TJ(x) E E. Given an 

m ~ {1, . . . ,  M}, suppose that the intersection 

fq [ira + N,(im + 1 ) - N )  
<~ 

is non-empty. Letting j be a value in the intersection and setting U = (i,. + l) - ]  
and L = j - ira, we conclude that (12) forces m to be good. Hence, for bad m, 

the intersection must be empty and consequently 

( 1 -  ~ - ~ "  density{j E [0, iM + l): i,. _-< j < i., + / f o r  some bad m} 

< 1 -  density(@)< ( 1 - - ~ - ~  e. 

The inequality resulting from dividing both sides by 1 - 2N/I, combined with the 

disjointedness of the blocks, implies the desired (11). [] 

REMARK. The above proof is more etiicient than the standard proof due to 
the neat idea, due to Ornstein, of defining E "bidirectionally" in (12). 

RIGIDITY CRITERION. We have a r > 0 and a generic point x. Suppose that Ve 

we can .find an arbitrarily large I and a non-zero s for which : A t  least r-percent of 
im+l,~ 

x IS can be covered by disjoint blocks {x ~ j,,= such that 

im +l im +s+l 
(13) d(x ,m , x  ,,+s ) = e .  

Then p(T)  > 

PROOF. Fix sequences {e,}7, {l,}7, and {s,,}7 such that e.---~0, l , ~ ,  and 

s, J 0, for which the hypotheses of the lemma hold with the roles of e, l, and s, 

played by en, l., and s,. It suffices to show that for each T, P cylinder set A : 

lira tz(A tq TS"A )>= K . tz(A ). 

We argue for some fixed A, with/~ (A)  > 0. As in the previous proof, there is no 

essential loss of generality in assuming A is a cylinder set of length 1. When 

regarded as a letter of the alphabet, it will be written " A "  
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Choose a large n so that e, ~/~ (A) and let l, s, and e, in (13), abbreviate l,, s,, 

and e,. By our choice of n we may have made l sufficiently large for the 

Standard Coding lemma to work for the set A. Consequently, as least (K - e)- 

percent of x 1o is covered by those blocks x 11~ +~ such that 

I f r e q ( " a "  in x [ i~+ ' ) - /z (A)[_  -< e. 

We can have chosen e ( = e.)  as small as desired compared with/.L (A) - -  so we 

may harmlessly pretend, in the above inequality and (13), that e equals zero. 

Hence, at least (K - e ' ) "  t~ (A )-percent of indices j E Is are such that 

x l , = " a " = x l , +  ,. 

So, by the ergodic theorem 

/z(A fq T*"(A))=> ( x -  e,)lz(A) 

where we have rematerialized the subscript n. Sending n ~ ~ sends e, ~ 0 and 

completes the proof. [] 

REMARK. (The upper density form of the Rigidity Criterion). The Rigidity 

Criterion, just as stated, will be used repeatedly. However,  to avoid making less 

intuitive its proof, we forbade stating the criterion in the triflingly stronger form 

which will be needed at the end of §3. 

The conclusion, that p(T)>= K, persists under a weaker condition on the 

manner in which x [?, is covered by the disjoint blocks {x 11.',+'}~=~. Namely, we 

only need that the upper density on x Io of these blocks, is greater than or equal 

to K. In fact, we need change neither the statement nor the proof of the criterion, 

if we agree to interpret each phrase 

" . . .  at least (such-and-such)-percent of so-and-so . . . "  

as asserting only that the upper density of so-and-so exceeds such-and-such. 

Using the upper density version of the Standard Coding lemma, we will be able 

to conclude only that the upper density of j E I?~ such that x Ij = " A "  = x [j+, 

exceeds ( K -  e)l~(A). Still, the ergodic theorem will imply that (A fq T'A)>= 

(K -- e )~  (A) and complete the proof. [] 

The reader may check the following corollary of the Rigidity Criterion, stated 

in terms of a sequence {(7.}7 of palettes, with h, denotinglen(C,).  

COROLLARY. Suppose 3K, ~ > 0  such that Ve and for arbitrarily large n, the 

[ollowing holds: There exists a W ~ C,, tz( W) >= K, and integers 0 <= j < j + s < 

j + s + l <= h, such that 
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I/', wl.  )----, 

and l/h, >-o,. Then p ( T ) >  K ~ > 0 .  

§2. Before starting the proof of the Rank of Powers theorem we need a 

lemma. 

LEyMA 5. R:  X---~X, O a generating partition, and {C'}~ a sequence of 

palettes/or R, O such that I c ' . l  -- r, where r = rk(R).  Then 3K > 0 such that V 

large n: 

# ( W ' )  > K, :oreach W'CC' . .  

PROOF. If not, then there exist infinitely many n - -  by dropping to this 

subsequence we may say "for all n"  - -  for which there exists a color W', E C', 

such tha t /z (W'n)~  0. But let C, be the palette defined by deleting the color W', 
from C',. Then/z  (C,) = /z  (C ' , ) - / z  (W',) which goes to 1 as n ~ .  Thus {C,}T is 

a sequence of palettes for R, Q and hence implies the contradiction rk(R)=< 

r - 1 .  [] 

We develop the notation to be used in the next two sections. T: X ~  X is 

ergodic with p ( T ) = 0  and generating partition P. Also, the transformation 

R = T p is ergodic, where p is some fixed positive integer. Evidently, the 
V~o TiP generates under R. By discarding a null set, we may partition O = P-~ 

assume that every point of X is generic both for T, P and R, O. Fix forevermore 

a point x E X. Let r denote rk(R).  Choose a sequence {C'.}~ of palettes for R, O 

such that I c'.l = r. Our goal is to show rk(R)  = p .  rk(T). By a previous lemma it 
suffices to show that 

rk(R) = p .  rk(T). 

Constructing "palettes" {C.}1 for the T, P process 

To ease the notation, let us, for a moment, assume that p = 3. For our generic 

point x E X, let x 17~ denote its T, P name and x' I~-~ its R, O name. Also 

abbreviate x I~ and x' li by xi and x'i, respectively. Each xi is a P-letter and each 

x'i a O-letter, that is, a triple of P-letters. Specifically 

x'i = (x3i x3i+l x3i+2) 

since R is T 3. 
<3 

Fix some n and let C'  denote C'., h' denote len(C'), and set 1 -  c5 = / ~ ( C ' )  
<1 

and e = d-err(C').  Any given W' E C '  is a O-h ' -word and may be written as a 
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sequence of triples 

0 1 h'-I  (W 0 W 1 W 0) (W 1 W 1 W~) ° ° °  (W0 h '-I  Wl W h ' - l )  

where each wj is a P-letter. If we erase the parentheses and push the letters 

together, we can intepret W' as a P-3h'-word which we denote by W. Define C 

to be the set of such W as W' varies over the colors of C'. Setting h = 3h', C is a 

collection of r many P-h-words.  

In light of the lemma which says that rk(T, P)  may be computed from the 

name of a single point, it will be useful to relax our definition of palette and 

regard C as a palette for T,P. For although we do not have a Rohlin stack 

associated to C, we can use the colors of C to (1 - 8)-cover, up to e d-error, the 

forward name x Io. In fact, there are three such coverings; one each inherited 

from the R, Q name of the points x, Tx and T:x. 

Let {i'}7,%1 be the covering by C' of the R , Q  name of x. For any i 'E{i~} ,  

setting W ' =  color(x'lf>'), we have, by definition, the left-hand inequality 
below: 

- ,I , , h  I ,÷h w )  e>-_d(x ,. ,W')>= x ~ , 

<~ 

Putting i = 3i', the right-hand inequality follows from the construction of W 

from W'. We will therefore call x ]i ÷h a swatch of color W. More precisely, we 

will call it a O-swatch since i - 0, where the symbol = means congruence mod 3. 
i m + 

Thus, setting im= 3 i ' ,  we see that the 0-swatches {x 1,,, h}m=l form a ( 1 -  8)- 

covering of x 1o up to e d-error. 

We will get a second such covering from the R, Q name of Tx. Denoting this 
name by (7"x)'lz  one has that 

<1 

Let {j,,},,=l be the covering of (Tx) '  1o by C'. Set ],~ = 3 ] ' +  1. Evidently {x 1,2 
is a ( 1 -  5)-covering of x [o (up to e d-error). Agree to call each x 1~2 ÷" a 
1-swatch, since jm -= 1. 

Similarly, arising from the R, Q name of T2x, we get a (1 - 5)-covering of x 1o 

by 2-swatches. 

The p different covering of x [o by C. 

We recapitulate, in slightly different language, our definition of k-swatch. 

However,  we will no longer be assuming that p = 3. The symbol - will 

accordingly henceforth mean congruence mod p. 
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Say that an index i commences a k-swatch x [i ÷h of color W, where k 

{ 0 , 1 , . . . , p -  1} and W ~  C, if 

T'(x)Ebase(W')  and i=-k. 

Set ~ ( C )  = 1 - 8 ,  d-err(C) = e and, for each W ' E  C', set /.t(W) = /x (W' ) .  

Then, for each value k = 0, 1 . . . .  , p -  1, the collection of k-swatches forms a 

covering of x 1o. We thus have p distinct coverings of x [o by the palette C; we 

will call these the 0-covering, the 1-covering . . . . .  up to the ( p -  1)-covering. 

Note that, in each of these different coverings, each color W E  C covers 

/z (W)-percent of x [o. Note also that the preceding lemma allows us to assert the 

existence of a positive constant r such that 

(14) Vn and foreach W E  C,: / x (W)>  K. 

A convention 

We can now dispense with the {C',}. From now on our proofs will use facts 

about the {Cn}: the p different coverings, (14), and [Cn[ = rk(TP) = r. The 

arguments will be of the form "choose an n sufficiently large . . . " .  At that point 

the n becomes implicit and C and h are automatically to mean C~ and len(C,), 

respectively. Also, for any integer I (perhaps representing the length of some 

substring of some color) let 1% denote the quantity l/h. 
The following theorem serves as a warmup for working with multiple 

coverings of a name x [o. It is evidently a special case of the full Rank of Powers 

theorem since, when rk (T)=  1, it reads rk(TP)_->p-rk(T) and hence this 

inequality is an equality. 

THEOREM 6. rk(T")_>- p. 

PROOF. It suffices to show that for infinitely many n, I Cnl= > p. Choose 

n so large that /x(C) is practically 1. Thus the name x Io is almost entirely 

covered by 0-swatches and, as we know, by k-swatches, for each and every 

k E {0, . . . ,  p - 1}. Hence there is some integer I, I - 0, commencing a 0-swatch 

x ]~+h which is mostly covered, for each k, by k-swatches. No harm will come if 

we assume perfection; that for each k, x [~+h is completely covered by k-swatches 

(see Fig. 15). So for each k -- 1 . . . . .  p - 1 there is an integer jk E [I,I+ h), with 
IJk Jk +h 

jk =- k, such that x jk-h and,~x jk are successive k-swatches. 

Let I = io< il < - ' - <  ip = I +  h be the p + 1 integers I,j~,...,jp_~, I+  h but 

arranged in ascending order. There must be at least one M E {0 . . . .  , p - 1} such 

that iM+I - iM --> h/p. Letting I denote this quantity iM+l - iM we can restate this as 
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Fig. 15. A swatch x 11 ÷h is denoted pictorially by [ - - - - ' - - ~  

j~ l+h 
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1% _--- tr, where  we let tr be a synonyn for the constant  l/p. Let  i denote  ira. We 

have arranged that,  for each k, the fixed word x Ii ÷t is a subword of one of the 

k-swatches overlapping x [~+h. For  k = 0 . . . . .  p - 1 let j~ be the index commenc-  

ing that  part icular  k-swatch;  so, for  k ~ 0, j~, is the e lement  of the pair {jk -- h,j~} 

such that 
j 'k<=i<i+l=lk+h. 

We now argue that the number  of colors, I C I, must be at least p. If not,  there  
j[~+h . jk+h 

exist two distinct subscripts k, K E { 0 , . . . , p -  1} such that x j~ ano x jk are 

the same color,  W. Since we can have chosen n arbitrari ly large, we can think of 

the colors of C ( = C,)  as covering up to arbitrarily small d-er ror .  Hence  there  is 

no harm in assuming equali ty 

x = w - - x  

Now j 'k~jk since j 'k--k~ K=-jk. For  definiteness, assume j~ ,> jk .  Let t ing 
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.¢3 .<1 

S ~ ° t  ° t  l k - l r  and j = i -j~, we may conclude that 
• j + s + l  wlY= wl., 

But this, by the corollary to the Rigidity Criterion, implies that T has positive 

rigidity, and hence gainsays an hypothesis of our theorem. [] 

DEFINITION. Suppose W and V are both words of length h. For any integer 

s, agree to regard V + s as the word V shifted left by s positions. It will be used 

only in the following context: Let the symbol d(W, V + s) denote the frequency 

of those values i in Io h such that the letter in the (i + s)th position of V either does 

not exist or exists, but is unequal to W I~. This definition of d(w,  V +  s) can be 

expressed, for s _-> 0, by the formula 

1 [s + (h - s)" d(W Io h-~, V I~)] 
h 

which we agree to interpret as 1 if s > h. For negative s, d (W,  V + s )  can be 

defined by an analogous formula or more succinctly as d(V, W + ( - s)). From its 

verbal description it is easy to see that 

d(w, V + s)+ d(v, U + s')>=d(w, U +(s' + s)) 

for h-words U, V, W and shifts s and s'. As a consequence of the triangle 

inequality above, note that the "shift distance" g ( . , . )  

(16) g(W, V) = infimum d(W, V +  s) 
s E Z  

is a metric on the set of words of a given length h. 
Say that h-words W and V are e-dose if there exists a shift s for which 

d(W, V + s ) <  e; note that this forces Is l<  eh. If we need to refer to the shift 
amount we will say that W and V are e-close via the shift s. 

LEMMA 7. There is a positive constant eo such that V large n: There exists a 

subset D of C,, [D f= > rk(T) such that no two distinct colors in D are Co-Close. 

PROOF. From the assumption that the lemma is false, we will obtain the 

following impossibility: For arbitrarily large integers h' and arbitrarily small e, 

there exists a collection D' of h'-words which (1-2e)-covers x [o up to 3e 

d-error, such that [ D'[ < rk(T). 
Given e, the presumed falsity of the lemma asserts we may choose n 

arbitrarily large for which there is a subcollection D of (7, [D I< rk(T), and two 

maps V( . )  and s( .) ,  
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V: C--*D, s: C - - * ( - e h ,  e h ) n Z  

such that for each color W E C 

(17) d(W, V +  s ) <  e 

where V and s are denoting, respectively, V ( W )  and s(W).  

In addition, we may have chosen n sufficiently large that 1 - / z ( C )  ~ e and 

d-err(C)'~ e. Since this choice is made freely with e known in advance, there is 

no danger if we simplify notation and assume perfection: /z(C)= 1 and 

d-err(C)--0.  Nor is it hazardous to pretend that the quantity eh is an integer. 

For by choosing n large, one can make eh ( = eh,) as large as desired; hence we 

can alter e by as small a percentage asdesired and make eh an integer. 
h-eh Define the quantities s ' =  e h -  s, h ' =  h - 2 e h ,  and the word V ' =  V ~h • 

Because Is I< eh one knows that 0 <  s' and s '+  h ' <  h. We claim 

(17') d (W ~,.h, V')<ae .  $' , 

We do the case of s > 0. By the definitions involved 

h - 2 e h  ~ l u l  I h -~h -~  h-~h < - -  

h - s  " '~"" I,h-, ,V l ,h  

Since (h -2eh ) / (h  - s) is greater than (1 - 2 e ) ,  which without loss of generality 

exceeds ½, the above and (17) imply (I7'). Finally, define the set of h'-words 
<:3 

D' = { V  h-,h. ~h • V ~ D } .  

This allows us to recapitulate and say that there are maps V': C ~ D '  and 

s': C ~ ( 0 , 2 e h ) n  Z such that (17') holds for each W E  C, where V' and s' are 
abbreviating V' (W)  and s'(W). 

ira-t- 
Suppose {x 1,, h},,=~ is a covering of x [o by C. Let W,, be the color of the ruth 

swatch and set s'<= s'(Wm). Then (17') implies 

im +s~+h' 
d(x ,,+s- , V'(Wm))<3e.  

Hence {x im+s&+h' Ii,,÷~ },-:~ is a (1-2e)-covering up to 3e d-error, by the collection 

D'. And Io'1 = I o l <  rk(T). [] 

FUNDAMENTAL LEMMA. VE, V large n : For each color W E C there is a color 

V E C such that W and V are e-close via a shift s satisfying s - 1. 

Deferring the proof of the Fundamental Lemma until the next section, let us 

see how it implies the theorem. 

RANK-OF-POWERS THEOREM. rk(T p) = p .  rk(T). 
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PROOF. Arguing that r k ( T ) -  < _ rk(T~)/p will suffice. Fix any e less than the eo 

of Lemma 7. Choose some n large enough that that lemma hands us a 

subcollection D of C ( = C,), with rk(T) _-<I D I, such that no two colors in D are 

e-close. Our goal is to prove that I D I <-- r/p. 
Define an equivalence relation ~ on our set C of colors, as follows. Say that 

W -  V if there exists a finite sequence of colors 

(18) W -- V1, V2 . . . .  , VK-1, VK -- V 

in C such that for each k, Vk and V~+~ are e/r-close via some shift sk-= 1. 

Evidently there is no need for a color ever to be repeated along a sequence (18). 

So when W -  V we can, in fact, find a sequence whose length K is no greater 

than r. Consequently W and V are e-close (via the shift E~ -1 sk). We see thus 

that the relation - partitions C into equivalence classes such that any two 

colors in the same class are e-close. Thus D can have at most one member in 

each equivalence class. So it suffices to show that there are no more than rip 
equivalence classes. We show this by demonstrating that each equivalence class 

has at least p members. 

We can have chosen n sufficiently large that the Fundamental Lemma holds 

for "e/r-close" replacing "e-close".  Now given a color, call it V~, in some 

equivalence class, we can iteratively apply ~ e  Fundamental Lemma p - 1 times 

to produce a sequence like (18), with K = p. Evidently, for any i and j with 
i - !  

1 _-< i < j _-< p, the colors V~ and Vj are e-close via the shift Ek°~s~. But each 

sk ~ 1 so this sum is congruent mod p to ] - i. Hence V~ and Vj are e-close via a 

non-zero shift. Contingent on our having chosen e small enough and n large 

enough, the Rigidity Criterion corollary implies that no color of C can be 

e-close to a non-zero shift of itself. Hence V~ and Vj must be distinct colors. 

Thus, the equivalence class containing V~ has at least p members. [] 

§3. This section arrives at a proof of the Fundamental Lemma. In the 

preceding section we proved the theorem rk(T p) _-> p, which implied the Rank of 

Powers theorem in the special case rk(T) = 1. The proof of rk(T p) => p used a 

local argument on the name x [o. That is, beneath a single swatch x [~+h in the 

0-covering we looked at the swatches - -  their colors and shifts - -  in the other 

coverings that overlapped this particular swatch x [~+h. However to obtain the 

Rank of Powers theorem in the general case, that is, to prove the Fundamental 

Lemma, we will use "global" arguments along x Io. We will contrast the colors 

and shifts of swatches in the other coverings which overlap different swatches of 

the same color in the 0-covering. 
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PROOF OF THE FUNDAMENTAL LEMMA. We argue by contradiction. If the 

lemma is false then there exist positive constants eo and tro such that the 

following holds. For each n (by having dropped to a subsequence and renum- 

bered) there exists a color U E Cn, call it red, for which: Whenever a color 

V E C, and positive shift s, s - 1, are such that 

&ulo v 

then, of necessity, s% > oro. In particular (having assumed n sufficiently large 

that d-err(Cn),~ eo) 

(19) I f  x I~i +h is a red O-swatch ana x Ij +" a 1-swatch then ll - i 1 %  > oro. 

Fix a value n, to be specified later 

Recalling the constant r (from §2, (14)) we know that at least r-percent of x 1o 

is covered by red swatches of the 0-covering. Let {i,,}~=, be the 0-covering of 

x Io. If we fix an integer constant L, L > 1/(r/4), we may assert that along the 

0-covering 

Greater than 3-percent of red swatches are such that: 

(20) Within at most L swatches into the future occurs another red swatch. 

In other words, for at least ] of red indices is, there exists an m', L _-> m ' -  m > 
i m ,+ h 

0, such that x i,. is also red. 

Now fix a positive number or < oro. The following definitions and arguments 

can be made using swatches in general. However, we only need use 0-swatches 

and 1-swatches. Agree henceforth to let "swatch" refer only to swatches of the 0 

or 1 coverings. 

DEFINITIOr~. Say that a swatch x Ii +~ significantly overlaps a swatch x I~ ÷h if, 

letting s denote the shift j - i, it is that 0_-< s < h and s% < 1 - or. This latter 

condition says that the swatches must overlap by at least or-percent. (An 

example is shown in Fig. 23.) [] 

DEFINITION. Suppose x ti ÷h is a 0-swatch. Let x Ii; +h denote the lth 0-swatch 

after it in the 0-covering; so io = i. Let jo be the largest index commencing a 

1-swatch such that j0< i; let jt commence the lth 1-swatch after this jo swatch 

(see Fig. 21). Say that x Ii ÷h commences a chain if for l = 1 . . . .  , L:  

il_l+h j +h 
x ,,_, significantly overlaps x j, and 

this latter significantly overlaps x Ii', +h. [] 
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0-covering 

io iz i~, iL-~ it 

) IZ J r ] 1~ I f  ..... '" 
1-covering ], .1"_, fi h 

Fig. 21. Each swatch drawn above (below) the line significantly overlaps the next swatch in the 
future below (above) the line. 

H o w  to p i c k  n 

Note that if / z ( C . ) =  I,  then the 0-swatches are contiguous and so are the 

l-swatches. Then (19) forces that each red 0-swatch commences a chain. 

Our first lower bound on n is that 1 - tt (C,) be so small that at least i-percent 

of the red 0-swatches are forced to commence chains. (We can accomplish this, 

in light of (19), because ~r is strictly smaller than ~ro.) So, combined with (20), 

Greater than K/2-percent of x [o is covered by those red O-swatches which 

commence a chain, and whose chain contains (another) red O-swatch. 

Our second lower bound on n comes from the Rigidity Criterion. Its corollary 

implies the existence of an e for which, V large n: 

If there exists W E C and non-negative integers 
(22) O<=j < j + s + l <= h, I% >= ~r, such that 

j+s+l 
d(W[i  ÷', W[,÷~ ) < e t h e n s  =0 .  

Now fix an n adequately large to exceed our lower bounds so that d - e r r ( C ) <  

o'e/4. As discussed earlier, h can be made so large that we may harmlessly 

regard o'h as an integer. 

Recapping the order in which we picked our constants: Given K, eo and O'o, we 

choose L and o-, then e, and then n. 

SHIFT-UNIQUENESS LEMMA. "For  each pair of colors there is at most one 

possible shift value for their overlap." 

For each ordered pair (W, V) of colors, 3s such that: If  x 1',+" significantly 
overlaps x [~÷h, where these are any two swatches of color W and V, respectively, 
then j - i must equal s. 

PROOF. Before arguing uniqueness of the shift, s, let us see what an overlap 

- -  as in Fig. 23 - -  implies about the colors W and V. By definition 

d-(x [~+h, V ) <  d - e r r ( C ) a n d  hence is less than oe/4.  Consequently 

&xli+ ",vlob< /4. 
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Fig. 23. Swatch x I: ÷h significantly overlapping x Ii +h 
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via a shift of s. The length of their common 
overlap exceeds a-percent of the length, h, of a swatch. 

Similarly, d-(W, x [i ÷h) < ere/4 and so 

d( W ]:+~h, x ,+,'+*+~h~, -~" e/4. 

Since i +  s equals j, the triangle inequality yields the following: 

Whenever a swatch o[ color W significantly overlaps a swatch o[ color V, by a shift 

Of $, 

- " + "  t;") < e t 2 .  (24) d(Wl ,  , V 

Now suppose there were two possible shift values, s' and s", for (a swatch of) 

color W to significantly overlap (a swatch of) color V. Then (24) would hold both 

for s = s' and s = s". By the triangle inequality 

s"+o-h\  d ( W  "'+"~ W ~.. )<-e. s' , 

So by the Rigidity Criterion, in the form (22), we conclude that s' must equal s". 
[] 

The Shift-Uniqueness Lemma implies the existence of a bound, independent 
of n, on the number of different kinds of chains. 

iv+ h 
To see this, suppose x ,o commences a chain as in Fig. 21. Let W~ and V~ 

jl+h 
denote the the color of x ],;+h and x ],, , respectively. By the preceding lemma, 

knowledge of the colors W~_~ and Vt determines the shift jt - i :- t .  Also, Vt and 

W~ determine i t -  it. Consequently, knowledge of the tuple 

(W0, V,, W,, V2, W2 . . . . .  VL, W& 

of 2 L + l  colors, determines all the shifts i t - i0 ,  for any l (that is, for 
l = 1 . . . . .  L). There are r 2L÷~ such tuples and so we may restate as follows. There 

is a set ,9° of "possible shifts" (positive integers), with 

lSel< L . r=<,  

such that for any chain (21), any l, the shift i t -  i0 is an element of 9°. The 

significance of 5¢ is that, although the shifts in the Shift-Uniqueness Lemma 
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depend on n, and hence so does the set 5 ~, the size of 5¢ is (bounded by a 

constant) independent of n. 

Recall that greater than K/2-percent of x Io is covered by those red 0-swatches 
ik + 

(which we agree to enumerate as {x I~ h}k=l) that commence a chain containing 

another red 0-swatch. Since 15el <= Lr2L+I, there is some particular shift s ~ 5¢ for 

which 
2 L + l  Upper Density (9)-> 1/Lr , 

where @ is the set of k ~ N such that the index i~+ s commences a red swatch. 

Define {i,,}~,=1 to be the set {i~}k~ enumerated in ascending order. The upper 
i.+ ~ ½K/Lr2L + 1 density of the swatches {x I~- h}m=l on x 1o will exceed the constant- 

Since, for each m, i,. and im+ s each commences a red swatch, 

i +h i m + s + h  
d(x 1,: , x I,m+~ )--< 2. d-err(C). 

We could have made h as large as desired and d-err(C) as small as desired by 

having taken n sufficiently large. Hence, by the upper density version of the 

Rigidity Criterion, we arrive at the contradiction 

p ( T )  >-_ ½K/Lr 2L+1 > O. 

This completes the proof of the Fundamental Lemma and hence of the 
Rank-of-Powers theorem. [] 

REMARK. If T is mixing and S is a root of a positive power of T, S q = T  p, 
then S is mixing and consequently 

rk(S) - p .  rk(T). - q  

For T finite rank mixing it turns out that every S in the commutant of T satisfies 

a relation S q = T p, p and q integral with q non-zero. This can be exploited to 

yield a structure theorem for the commutant group of T; this will appear 

separately. 

QUESTION. Does the Rank-of-Powers result hold for non-uniform rank, rk? 

For T rank-1 it does hold; an argument similar to that of Theorem 6 yields that 

~ ( T  p) ~ p. 
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